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Abstract: Maintenance of soil health is of foremost importance to sustain and increase crop produc-
tivity, while meeting the demand of a rising global population. Soil microbiome is gaining increasing
attention as a modulator of soil health. Microbial communities confer traits to the soil as a living
organism, which functions holistically and conforms part of the plant holobiont, reassembling the
human-gut axis. Novel strategies in biostimulant development advocate for modulation of the native
soil microbiome and the reinforcement of microbial networking to outpace pathogen inclusion. Con-
sequently, we hypothesize that Terramin R© Pro may promotes beneficial microorganisms, depending
on the native microbiota of soil, which would lead to an improvement of crop performance indicators.
We proposed a soil microbiome-based approach to characterize the effect of an L-α-amino acid based
biostimulant (Terramin R© Pro) on resulting plant phenotypes in lettuce cultivars (Lactuca sativa L.)
to address our hypothesis. First, product application promoted Actinobacteria group in assorted
soils with different track of agronomic practices. Secondly, biostimulant application improved chloro-
phyll content in particular soils deviating from standard conditions, i.e., sick or uncultivated ones.
Specially, we observed that product application at 30 L ha−1 improved lettuce phenotype, while
potentially promoted entomopathogenic fungi (Beauveria and Metarhizium spp.) and suppressed other
lettuce disease-related fungi (Olpidium spp.) in nematode-infested soils. Further investigations could
deepen into Terramin R© Pro as a sustainable prebiotic strategy of soil indigenous microbiota, through
in-house microbiome modulation, even in additional crops.

Keywords: soil microbiome; biostimulants; soil health; metagenomics; crop production

1. Introduction

Maintaining and restoring soil health is a major and long-term endeavor of sustainable
agricultural practices. Crop production needs to be doubled by 2050 to sustain a 9 billion
population and secure food production worldwide [1]. Because of the inherent definition
of soil health, the role of soil microbiome is gaining attention as a driver of plant growth
and phenotype expression [2]. Hence, management of soil microbiome using environmen-
tally friendly biostimulants is an appealing complement to chemical synthetic fertilizers
to improve crop yield and meet upcoming demand, while preserving and restoring soil
health [3,4]. This strategy might be achieved through the promotion of targeted microor-
ganisms, which act as osmoprotectants and increase mineralization and mobilization of
nutrients and soil organic matter [5,6].

Evidence shows that healthy soils enable crops to grow faster and more efficiently in
a long-term sustainable manner [7]. Soil microbiome is formed by bacterial, fungi, and,
to a lesser extent, protist communities. Some of them are responsible for biogeochemical
cycles and supply nutrients to the plants, while they increase the nutrient use efficiency,
enhance stress tolerance response, and improve plant disease resistance. Plant and soil
microbial communities are interdependent. Plants provide C-rich organic compounds
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to microbial communities and microbes contribute to plant development with ready-to-
assimilate nutrients through the decomposition of the organic matter [8]. However, some
taxa groups entangle a risk for plant health and may trigger a microbiome dysbiosis, causing
a further disease to the plant. Therefore, a detailed understanding of soil microbiome is
necessary to advance in the fine-tuned microbiome intervention, as a promising approach
to improve crop health and yield in a long-term time frame, while avoiding potential risks.

Plants endure harsh conditions such as drought, flooding, excessive salinity, low/high
temperatures, unfavorable pH, and high concentrations of toxic compounds. It has been
widely demonstrated that rhizospheric microorganisms can protect plants against stress con-
ditions [9]. Under salt stress, Na+ and Cl− accumulation interferes in nutrient absorption,
hindering nutrients and water movement through the root membrane [10,11]. In agriculture,
a biostimulant is any microorganism or substance applied to plants aiming at improving abi-
otic stress tolerance (e.g., excessive salinity, harsh pH or drough/flooding), crop quality and
performance, such as nutrition efficiency despite its nutrient content [12,13]. Biostimulants
represent a sustainable alternative to the use of fertilizers because of their biological origin
and their lower dosage [14]. Unlike fertilizers that directly fuel the plants, organic biostim-
ulants may promote natural soil processes [15]. Acting as nourishment for both plants and
soil microbes, biostimulants may underpin a modulation of soil microbial community that
impacts crop phenotype expression. Novel biostimulant commercial approaches are being
developed with the aim of promoting local beneficial soil microbiota instead of inoculating
standardized microbial products [12]. Biostimulants may mediate signalling between soil
microbiome and plants that enhance crop growth [16].

In this context, protein hydrolysates (PHs) have gained attention as biostimulants
because they improve crop yield, germination, and quality while ameliorating plant abiotic
stresses [12,17]. More in particular, proline supplementation could enhance germination
and root extension in chickpeak cultivars under heat stress [18]. The application of PHs
in lettuce cultivars could ameliorate salinity resilience by increasing the concentration of
osmoprotectants and nitrogen metabolism, leading to higher yields [19,20]. PHs biostimu-
lating effect has been linked to their content in soluble peptides and free amino acids, which
may act as precursor for the biosynthesis of phytohormones (plant growth regulators)
and other metabolically important bioactive compounds, contributing to the plant-growth
enhancement. PHs also include L-α-amino acids, whose use can be more targeted and
easily absorbed by the plant. L-amino acids and peptides have demonstrated to be better
absorbed by plants when compared to D-enantiomers. Consequently, enhanced L-amino
acid uptake and mineralization has been found in contrasting soil types, such as in Antartic
fields [21]. PHs have shown to be easily absorbed by soil microorganisms, which helps to
improve soil structure, soil organic matter content, and nutrient availability [22]. Recent
studies indicate that PHs directly modulate the plant microbiome, which drives the above-
mentioned effects [23–25]. For instance, foliar application of a PH promoted the epiphytic
bacteria related to Enterobacter/Pantoea group [26]. Most of the PH-based biostimulants
evaluated to date have been shown to have a broad-spectrum effect on the biochemical
properties and microbial community of the soil [22]. Inoculation of amino acid-based
biostimulant promoted the activity of native soil microorganisms in the medium-term
(49 days) [27]. Notably, saprophyte bacteria and fungi are known to promote plant growth.
The application of glutamic acid could restore the population of the core microbiome and
exert a disease control effect on strawberry cultivars due to its natural biological role in this
ecosystem [28]. The effect range of amino acid-based biostimulants is subjected to soil pH,
as it changes the protonation states of their functional groups. For instance, soil acidification
reduced glycine uptake by microorganisms, while it increased uptake by maize.

In this study, we proposed a soil microbiome-based approach to characterize the effect
of a L-α-amino acid based biostimulant (Terramin R© Pro; Bioiberica, Barcelona, Spain) on
resulting plant phenotypes in lettuce cultivars (Lactuca sativa L.). Lettuce was chosen as a
model crop because of their economic importance in worldwide, as it is relatively easy to
cultivate in different soil types and its short cultivation cycles. The soil microbiome and
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product effects were studied on three different soil types with an historical track of various
health soil status and agronomic conditions. This will allow us to disentangle a general
and soil-specific effect of product application on soil microbial communities in terms of
microbial composition and structure. We hypothesise that Terramin R© Pro may act as a
prebiotic promoting beneficial microorganisms, especially in soils deviating from a healthy
status, which impact crop performance indicators.

2. Materials and Methods
2.1. Field Trials

Field trials were carried out in Murcia, Spain in three different blocks on lettuce crop
(Lactuca sativa L.). Each block corresponded to: (i) standard soil, as a conventional cultivated
soil (Block 1) with a high crop rotation, (ii) sick soil, infested by nematodes (Block 2), and
(iii) uncultivated soil, that had not been cultivated neither aerated for more than 20 years
(Block 3). Physicochemical characteristics of these soils can be found in Table S1. Field trials
were carried out as a randomized complete block design, and three replicates per treatment
were performed. Elemental plots were 15 m2 with 75 plants per plot. Two applications of
Terramin R© Pro were done after thirty-three and forty-seven days after transplant and at two
different doses (15 L ha−1 and 30 L ha−1) using a drip irrigation system with 17,000 L ha−1

of water volume and with 200 KPa of pressure. Terramin R© Pro is a commercial biostimulant
based on L-α-amino acids obtained through an exclusive enzymatic hydrolysis (Enzyneer R©
technology) manufactured by Bioiberica S.A.U. Terramin R© Pro composition can be found
in Table S2.

2.2. Plant Phenotype Measurements

Crop yield and plant perimeter were assessed at thirty-five days after second treat-
ment. Leaf chlorophyll concentration was assessed eleven days after second treatment and
determined in situ through optical meters, SPAD-502. Results are expressed as chlorophyll
concentration indicator (CCI).

2.3. Soil Sample Collection for Barcoding Metagenomics

Sampling was performed at two different time points, before product application
(T0) and after fifteen days of the second treatment application (T1). Each time point was
sampled in triplicate on each block. A total of 54 bulk soils were collected in sterile tubes
and were sampled from cores at the topsoil (2–4 cm in deep). To capture the variability
across in the blocks, samples were collected across different locations per block.

2.4. DNA Extraction and Sequencing

After collection, samples were immediately sent for molecular analysis to the Biome
Makers laboratory in Valladolid, Spain. DNA extraction was performed with the DNeasy
PowerLyzer PowerSoil kit from Qiagen. To characterize both bacterial and fungal microbial
communities associated with bulk soils and rhizosphere samples, the 16S rRNA and internal
transcribed spacer (ITS) marker regions were selected. Libraries were prepared following
the two-step PCR Illumina protocol using custom primers amplifying the 16S rRNA V4
region and the ITS1 region described previously [29]. Sequencing was conducted in an
Illumina MiSeq instrument using pair-end sequencing (2 × 300 bp). The bioinformatic
processing of reads included the merging of forward and reverse paired reads to create
robust amplicons, using Vsearch with minimum overlaps of 100 nucleotides and merge
read sizes between 70 and 400 nucleotides [30]. OTU clustering was performed at 97%
sequence identity, followed by quality filtering through de novo chimera removal using
the UCHIME algorithm [31]. Taxonomic annotation was performed using the SINTAX
algorithm, which uses k-mer similarity to identify the top taxonomy candidate, after
which we retained results where the species level had a score of at least 0.7 bootstrap
confidence [32]. We used the SILVA database version 132 and UNITE database version 7.2
as taxonomic references [33,34].
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2.5. Network Properties Computation

Microbial community networks were built for16S and ITS samples independently
following the methodology described by Ortiz-Álvarez et al. [35]. Briefly, a presence–
absence metanetwork with all samples was built, and the OTU pairs occurring significantly
more or fewer than expected by chance were preserved to create the co-occurrence or
co-exclusion network, respectively. Then, a local network was retrieved by subsetting the
OTU pairs existing in each individual sample from the metanetwork.

2.6. Statistical Analysis

Statistical analyses of microbiota data were done mainly using phyloseq and mi-
crobiome R packages [36,37]. The generation of rarefaction curves allowed estimating
sample intradiversity in terms of bacterial richness and Shannon index at the same se-
quencing depth. Beta diversity was calculated on compositional data using Principal
Coordinate Analysis (PCoA) ordination and Bray–Curtis distance matrix. Variance in
microbial composition due to soil, time, and treatment was assessed through Permanova
analysis. Differential abundant taxa at genus level between treatments time wise or at
the end of the treatment per block were estimated through a negative binomial regression
using rarefied counts and DEseq2 R package [38]. Differential abundant taxa between
blocks before the experiment was also determined. Bacteria or fungi at different taxonomic
levels discriminating between control condition and Terramin R© Pro at 30 L ha−1 in all
soil types at the end of the experiment (T1) were assessed through LDA effect size (LEfSe)
with default settings and using block as a subclass [39]. Taxa at genus level were shared
taxa across different combinations of aggregated treatment and time sets for bacteria and
fungi if a taxon was present in 80% of the samples without a detection cutoff. Differences in
microbiome or plant phenotype data among treatment groups or time points were assessed
through t-student test in case of pairwise comparisons or through ANOVA followed by
Tukey–Krammer test on multiple comparisons.

3. Results
3.1. Biostimulant Impact on Plant Phenotype

Harvest yield, leaf chlorophyll content, and plant perimeter phenotypes were com-
pared among three different soil types at the end of the treatment (Terramin R© Pro at 30 L
ha−1 had the highest effect on plant phenotype indicators (Figure S1). Hence, Terramin R©
Pro at 30 L ha−1 was considered as the reference treatment condition for subsequent
analysis. Particularly, at the dose of 30 L ha−1, the L-α-amino-acid-based biostimulant
significantly increased harvest yield in uncultivated soils and improved plant perimeter in
standard soils and leaf chlorophyll content in sick and uncultivated soils (Figure 1C). The
application of the biostimulant yielded approximately 20% increase in chlorophyll content
on sick and uncultivated soils, whereas it had no effect on standard soils (Figure 1B,C).

3.2. Microbiome Diversity across Soil Types and Biostimulant Application

Block fields corresponding to sick and uncultivated soils, respectively, were closely
allocated, whereas the block corresponding to standard soil was more distant (Figure 2A).
Bacterial and archaea intradiversity given by 16S marker significantly varied across different
soil types. Standard soil showed the highest bacterial and archaea diversity when compared
to the other soils in both Shannon and taxa richness diversity indices (Figure 2B). These
differences could be affected by contrasting soil physicochemical conditions, mainly when
comparing uncultured and sick soil with the standard soil (Table S1). Generally, fungal
diversity was homogeneous across the three soil types; only standard soil showed a lower
fungal diversity when compared to sick soil in terms of Shannon index (Figure 2B).
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Figure 1. Harvest yield (kg ha−1), leaf chlorophyll content (CCI), and plant perimeter (cm) phenotype
comparison (A). Plant phenotype indicators comparison among different soil types without treatment
(B). Percentage of phenotype expression increases after treatment with Terramin R© Pro at 30 L ha−1

respect to the control condition (C). Phenotype comparison after treatment with Terramin R© Pro at 30
L ha−1 compared to the control condition. p-values shown in the top of panel A and B indicate the
resulting ANOVA significance. In Panel C, note that only statistical differences among treated and
control for the same soil type are shown. Significant statistical differences between groups (A,B) or
pairwise (B) are indicated as follows: * (p-value < 0.05), ** (p-value < 0.005), *** (p-value < 0.0005),
**** (p-value < 0.00005).

Species richness increases over time in all conditions and soil types. Notably, Terramin R©
Pro at 30 L ha−1 led to higher species richness and Shannon diversity in uncultivated and
sick soil, respectively (Figure 2C). Conversely, fungal diversity did not vary across time
and conditions, except for sick soil where Shannon diversity decreased as the experiment
progressed (Figure 2E). Similarity ordination grouped samples depending on the soil type
for both 16S and ITS markers (Figure 2D,F). In fact, soil type could explain around 50% of
the total variance in both cases. while treatment time accounted for 17% and 7% for 16S and
ITS markers, respectively (Table S3). Conversely, treatment at T1 did not impact on micro-
biome composition (Table S4). Timewise comparisons considered only samples assigned to
each experiment with their respective T0 (before treatment) and T1 (after treatment). This
is because control and Terramin R© Pro at 30 L ha−1 conditions were allocated in slightly
different locations inside the same soil block and could introduce further variability.
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Figure 2. Geospatial distribution of field block 1, 2, and 3 corresponding to standard, sick, and un-
cultivated soil types, respectively (A). Alpha diversity determined with Shannon index and number
of observed taxa among soil types at T0 before treatment (B), after treatment with Terramin R©Pro at
30 L ha−1, and control condition (T1) compared to before the treatment (T0) on bacteria and archaea (C)
and fungi microbiota (E). p-values represent the resulting pairwise statistical significance level between
a given condition at T1 compared to T0. Principal Coordinate Analysis (PCoA) using Bray–Curtis dis-
tances of bacteria and archaea (D) and fungi microbiota (F) before (T0) and after the treatment (T1) on
Terramin R©Pro at 30 L ha−1 and control conditions. Significant statistical differences between groups
(A,B) or pairwise (B) are indicated as follows: * (p-value < 0.05), ** (p-value < 0.005), *** (p-value < 0.0005),
**** (p-value < 0.00005).
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3.3. Discriminating Taxa between Terramin R© Pro at 30 L ha−1 and Control Conditions

Linear discriminant analysis across all taxonomic levels and differential abundance
at genus level was performed to identify common features of treatment conditions on all
soils and per each soil type, respectively (Figure 3). Composition of fungal communities
showed a higher variation due to treatment and time (Figure S2). Differential abundance
on each soil type could identify fungal genera with significant fold changes in control and
Terramin R© Pro at 30 L ha−1 conditions after the experiment for sick and uncultivated soils
(T1). Notably, Beauveria spp. was differential abundant after treatment with Terramin R©
Pro at 30 L ha−1 in both sick and uncultured soils, suggesting a similar mode of action of
the biostimulant in soils deviating from a healthy status.
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Figure 3. Volcano plot showing differential abundant taxa (absolute log fold change > 2 and adjusted
p value < 0.05) at genus level in Terramin R© Pro at 30 L ha−1 compared to control condition after
treatment T1 per soil type. Only markers and soil types presenting significant results are shown (A).
Linear discriminant analysis (LDA) scores of bacteria and archaea microbiome at different taxonomic
levels (B) and boxplot showing relative abundances of Terramin R© Pro at 30 L ha−1 and control
conditions after the treatment T1 (C).

Linear discriminant analysis identified Actinobacteria class as a common Terramin R©
Pro at 30 L ha−1 feature in all soils when compared to the control condition after the
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treatment (Figure 3B,C). On the contrary, control conditions in different soil types were
characterized by Enterobacteriaceae family, Metylotenera, Reyranella, and other Rhodospir-
illales. Bacillaceae family seemed to be more abundant after treatment with Terramin R©
Pro at 30 L ha−1, specially on standard soils. In fact, many genera belonging to this family
were differential abundant in standard soil when compared to sick or uncultured soils
(Dataset S1). Noteworthy, Bacillus-related genera are highly correlated with higher chloro-
phyll content (Figure S7).

3.4. Soil Type Impact on Microbiome Local Network Properties

Microbial networks were constructed following the methodology described by Ortíz-
Álvarez et al. [35]. The global network was built using samples from control and Terramin R©
Pro at 30 L ha−1 conditions at both time points. Then, network properties from the
local co-occurrence and co-exclusion networks representing each individual microbiome
sample were calculated and compared among soil types. Soil type had diverging network
properties at T0, mainly for prokaryotes (Figure 4). Uncultivated soil showed a higher
average path length and lower transitivity of co-occurrence 16S network. Conversely,
co-exclusion proportion of nematode-infested soil was higher when compared to the other
two soil types for both 16S and ITS. There are no significant differences when comparing
network properties before and after treatment application (Figures S3–S6).
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Figure 4. Network properties on co-occurrence (enriched) and co-exclusion (depleted) 16S (A)
and ITS (B) metanetworks. Network properties comparison between soils showing contrasting
track of agricultural conditions before the treatments. p-values show the statistical significance of
ANOVA analyses while significance of post-hoc comparisons among groups are indicated as follows
* (p-value < 0.05), ** (p-value < 0.005), *** (p-value < 0.0005), **** (p-value < 0.00005).
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4. Discussion

Current sustainable agricultural tendencies push for application of biostimulants to
promote plant growth enhancing nutrient uptakes while reducing off-farm inputs. As-
sessing the effect on plants from external factors (such as biostimulants, soil microbiome,
soil properties, or a combination of them is one of the current challenges in microbiome
research and is not limited to the soil microbiome [40]. Often, we can only assess relation-
ships through correlation analysis, which does not imply a relationship of cause–effect [41].
Plants may synthesise amino acids, but such biosynthesis has a high energy demand.
Supplementation with ready-to-use L-α-amino acids can boost plant performance by over-
coming such metabolic energy barriers [42]. Therefore, L-α-amino acid-based biostimulants
may improve plant phenotype depending on soil health status. We assessed the appli-
cation of Terramin R© Pro on soils with different historical track of agronomic practices.
As expected, standard soil showed the highest plant performances when compared to
sick ( nematode-infested) and uncultivated soils. Terramin R© Pro could improve plant
performance indicators, especially yield and chlorophyll content, on soils deviating from a
standard condition. Total nitrogen in the soil has shown to be positively correlated with
chlorophyll content in lettuces cultivated hydroponically [43]. Uncultivated soil had almost
twofold lower N content and showed the lowest initial chlorophyll content. Noteworthy,
the application of Terramin R© Pro at 30 L·Ha−1, with organic nitrogen coming entirely
from L-α-amino acids, could drastically improve yield and leaf chlorophyll in lettuce crops
cultivated in sick and uncultivated soils to levels comparable to the ones found in the
standard soil. This can be linked to pre-existing differences in chlorophyll content across
contrasting soil types, which would leave a frame for phenotype improvement due to
product application. Anyway, it is well known that chlorophyll plays a major role on plant
photosynthesis and consequently, an increase of lettuce crop yield was also observed for
these soils.

Although L-α-amino acids and peptides from PHs have a direct impact on crop yield,
those substances could act as a nitrogen and carbon source for the plant microbiome, from
the phyllosphere to the rhizosphere. Furthermore, microbes are more competitive for
amino acids when compared to plants [44]. This may suggest that free L-α-amino acids
could be metabolised by microbes, impacting the uptake by the plants and their growth
performance [23]. Hence, we studied how Terramin R© Pro at 30 Ha L−1 affected soil micro-
biome from plots with contrasting agronomic conditions. Standard plot showed the highest
prokaryotic diversity and richness when compared to the other soils. Higher microbial
diversity reflects a more heterogeneous distribution of species within the microbial com-
munity, granting function redundancy to thrive into the environment [45]. Soil biodiversity
has been shown to be positively associated with higher crop yields [46]. On the contrary,
uncultivated soils not only had lower basal crop performance, but also showed the lowest
bacterial diversity. This might be linked to the lower content of essential nutrients, such as
phosphorous, nitrogen, and organic matter content. Biostimulant effects on the microbial
community can vary greatly depending on the type of soil. For example, in sandy soils the
effects could be different than in clay soils, due to differences in nutrient availability, water
holding capacity and organic matter content [47]. Beyond this, a mixture containing betaine
as the only nitrogen source could increase the yield of lettuce cultivated in open field, but it
did not have any impact on similar crops grown hydroponically [48,49]. In fact, the amount
of amino-acid-based biostimulants and the number of applications depend not only on
sand content of the soil but also on the crop [50,51]. PHs significantly increased nutrient
uptake in several crops. More in particular, they have shown to increase nitrogen uptake in
tomato, maize and lettuce, whereas no significant impact on sugar cane performance was
observed [20,52,53]. However, limited studies linked PHs supplementation to the promo-
tion of crop performance and modulation of the soil microbiome. Tejada et al. observed
changes in soil microbial community structure and activity, which led to an increased plant
establishment on degraded soils [23]. Regarding community structure, we observed benefi-
cial microbiome network properties in standard soils when compared soils deviating from
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standard conditions for 16S co-occurrence networks. Notably, standard soil had a higher
performance, mainly on chlorophyll content. These network properties, a higher cluster-
ing coefficient (transitivity), lower modularity, and average path length, were previously
associated with healthier soils [35]. However, previous studies attain yield improvement
to fungal co-occurrence network transitivity rather than prokaryotic one [54]. However,
Rhodotorula spp. was found to be differential abundant on standard soil compared to both
sick and uncultured soils. Species belonging to this genus may degrade different kinds of
pesticides, with the potential to be used in soil bioremediation [55,56]. Rhodotorula pres-
ence was higher after lettuce cultivation in sick soil in both control and treated conditions.
Terramin R© Pro treatment could further enhance Rhodotorula spp. abundance. Notably,
Rhodotorula mucilaginosa promoted lettuce crop performance by conferring aluminium,
salinity, and drought stress mitigation [57]. In addition, the application of Terramin R© Pro
on sick soils could block the development of Botrytis spp., a widespread necrotrophic fun-
gus, while suppressing the development of Olpidium spp., a fungi responsible for acting as
a vector of lettuce big-vein disease viruses [58,59]. Terramin R© Pro promoted Beauveria spp.
in soils deviating from a standard condition (sick and uncultivated), whereas Metarhizium
genus was differential abundant on treated sick soil, which had an historical agronomic
track of nematode infestation. Both fungi are entomopathogenic. In particular, some species
belonging to this genus, such as Beauveria bassiana, are used as biocontrol agents because
they are entomopathogenic for a wide range of insects, including lettuce aphid, and are
considered and even used as soil health indicators [60,61]. On the other hand, Metarhizium
may promote other microorganism associated with enhanced plant performance and may
drive a disease suppressive soil status, for instance by attracting and killing plant parasitic
nematodes through the production of 1-octen-3-ol and 3-octanon [62,63]. In fact, Beauvearia
bassiana and Metarhizium anisopliae have proved to be effective as a biocontrol strategy of
root-knot nematodes [64]. In addition, Metarhizium has been proved to be a bioremediation
tool due to is ability to detoxify heavy metals, such as cadmium and mercury[65,66]. These
genera may also colonize plant roots and enhance nutrient mobilization. For instance,
Beauvearia spp. and Metarhizium spp. may also are able to translocate nitrogen directly
from infected insect cadavers to the plant host, connecting insect pathogenicity directly
to plant root colonization [67]. Hence, we hypothesize that Terramin R© Pro supplementa-
tion promotes entomopathogenic fungi in infested soils to counteract pests-derived stress
and subsequently improve crop performance while providing additional beneficial effects.
Hence, amino-acid-based biostimulants show a potential to be used as a prebiotic for the
indigenous beneficial microbiota.

Finally, Actinobacteria taxonomic class was identified as a common feature for all soils
treated with Terramin R© Pro at a 30 L ha−1 when compared to the control condition after
the treatment. Actinobacteria play different roles in agricultural soil sustainability, such
nutrient solubilization and uptake [68–70]. Deficit of iron may lead to chlorosis, especially
in alkaline soils, since it is an essential component of several enzymes and proteins involved
in the synthesis of chlorophyll in plants. We observed twofold lower content of iron in
sick and uncultivated soils, which had 20% less chlorophyll when compared to standard
soil. Actinobacteria are known to have various auxotrophies relying on the metabolism
of other microorganism to thrive in the environment. In addition, this taxon is known
to play an important role in iron solubilization through the production of siderophores.
We hypothesize that Terramin R© Pro supplementation may promote Actinobacteria in
different soils bypassing the codependence on other microbial metabolism for amino acid
supplementation to survive in environmental niches. In addition, they may promote plant
growth through iron solubilization in harsh conditions, such as soil alkalinity [71].

5. Conclusions

Our results showed that the supplementation with an L-α-amino-acid-based bios-
timulant promoted plant performance and modulated soil microbiome community and
structure depending on the initial agronomic condition of lettuce crops. Although we could
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not claim causal relationships in this study because we assessed correlations only. Hence,
we can hypothesize the observed effect, or at least part of the effect, is associated to the
soil microbiome. Further studies will deepen in the mechanisms underlying microbiome
modulation in relation to crop performance. This could be achieved through metabolomics,
which will allow to unravel amino acid metabolism and microbiome–host interactions such
as root response. The road map for the design of novel biostimulants should be directed
toward improving both plant performance and microbiome, considering the system as
a holobiont.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture13020344/s1. Figure S1: Harvest yield (kg/Ha), plant
perimeter (cm) and leaf chlorophyll content (CCI) phenotype comparison among Terramin 15, Ter-
ramin 30 and the control condition. p-values shown in the top of the facets indicate the significance
of ANOVA test. Significant differences between groups are indicated as follows: * (p-value < 0.05),
** (p-value < 0.005), *** (p-value < 0.0005), **** (p-value < 0.00005). Figure S2: Relative abundance
at family level of the archaeal and bacterial (Panel A) and fungal microbiota (Panel B), before and
after treatment with Terramin 30 and control condition in standard, sick and uncultivated soil types.
Figure S3: Network properties comparison between control and terramin 30 conditions after treat-
ment for 16S marker p-values represent the resulting pairwise statistical significance level between
conditions. Figure S4: Network properties comparison between control and terramin 30 conditions
after treatment for 16S marker p-values represent the resulting pairwise statistical significance level
between conditions. Figure S5: Network properties comparison before and after treatment for Ter-
ramin 30 and control conditions for 16S marker. p-values represent the resulting pairwise statistical
significance level between conditions. Figure S6: Network properties comparison before and after
treatment for Terramin 30 and control conditions for ITS marker. p-values represent the resulting
pairwise statistical significance level between conditions. Table S1: Physicochemical characteristics
of standard, sick and uncultured soils. Table S2: Physicochemical composition of Terramin R© Pro
biostimulant. Table S3: Permanova test comparing the variance at the beginning and at the end of
the experiment (time) in all (general) and in each soil type. Table S4: Permanova test comparing
after treatment (T1) after Terramin 30 and control conditions (treatment) in all (general) and in each
soil type. Dataset S1: Differential abundant (DA) taxa (absolute log fold change >2 and adjusted
p value < 0.05) at genus level on the three soil types before treatment. if the log fold change is >2 the
taxa is DA in soil type present on the right of condition string
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